
What HTTP/2.0 will*

do for you

Mark Nottingham
http://www.mnot.net/

or, @mnot

TO__

forward-looking statement

A projected financial statement based on
management expectations. A forward-
looking statement involves risks with
regard to the accuracy of assumptions
underlying the projections.
Discussions of these statements typically
include words such as estimate,
anticipate, project, and believe.

*
___TECHNICAL

1. Some recent history

IETF HTTPbis WG
WHAT? to clarify RFC2616 and improve interop

WHO? Roy Fielding, Julian Reschke

WHO (2)? Apache, Mozilla, Chrome, IIS, Varnish,
Squid, F5, Curl, ATS, IE, HAProxy...

WHEN: Almost finished!

WHEN (2): ... after FIVE YEARS :(

IETF HTTPbis WG (2)

STRICTLY chartered to avoid making a new
version of the protocol.

Because EVERYBODY knows that’s not going
to happen.

MEANWHILE

November 2009: Mike Belshe and Roberto Peon announce SPDY

March 2011: Mike talks about SPDY to the HTTPbis WG at IETF80

~April 2011: Chrome, Google start using SPDY

March 2012: HTTPbis solicits proposals for new protocol work

March 2012: Firefox 11 ships with SPDY (off by default)

May 2012: Netcraft finds 339 servers that support SPDY

June 2012: Nginx announces SPDY implementation

July 2012: Akamai announces SPDY implementation

Tuesday: HTTPbis re-chartered to work on HTTP/2.0, based on SPDY

2. What is it?

NO change to HTTP semantics; it’s
about how it gets onto the wire

Nothing new
to see here

Not magic

1.multiplexing

2.header compression

3.server push (?)

4.TLS (?)

2.1 multiplexing

GET /foo

200 OK

vanilla
HTTP/1.0

One request
per TCP connection

cl
ie

nt

server
connection close

connection setup

OMG ITS SO SLOW

GET /foo

GET /bar

200 OK

200 OK

HTTP/1.0
(with Keep-Alive)

GET /baz

able to reuse
connections, avoid
connection setup

GET /foo

GET /bar

200 OK

200 OK

BUT
it still blocks

GET /baz

one outstanding
request at a time

GET /foo
GET /bar

200 OK

200 OK HTTP/1.1

multiple, ordered
requests

(with pipelining)

GET /baz

200 OK

head-of-line
blocking

GET /foo
GET /bar

200 OK

200 OK
Still serialised!
Large downloads /
long “think” time can
block other requests

The State of the Art
• Use persistent connections (“keep-alives”)

• Pipelining is getting a little deployment

• Use multiple connections for parallelism

• RFC2616 said “2”; HTTPbis says “reasonable”

• Browsers use 4-8; bad people use more

• Build lots of heuristics into browsers for
connection reuse

• Hope that it all works out

What’s so bad about that?

• TCP is built for long-lived flows

• More connections = shorter flows

• Congestion control doesn’t have time to ramp up

• Makes Buffer Bloat worse

• Fairness (user to user, app to app)

• How many connections is the best?

cascading waterfalls

four at a time

SPDY
multiplexing

GET /foo

GET /bar

200 OK

• one connection
• many requests
• prioritisation
• out of order
• interleaved

GET /baz

GET /a

GET /b

GET /c

200 OK

200 OK

200 OK

200 OK
NO* QUEUING

2.2 header compression

GET / HTTP/1.1
Host: www.etsy.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/536.26.14
(KHTML, like Gecko) Version/6.0.1 Safari/536.26.14
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
DNT: 1
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie: uaid=uaid%3DVdhk5W6sexG-_Y7ZBeQFa3cq7yMQ%26_now%3D1325204464%26_slt
%3Ds_LCLVpU%26_kid%3D1%26_ver%3D1%26_mac
%3DlVnlM3hMdb3Cs3hqMVuk_dQEixsqQzUlNYCs9H_Kj8c.;
user_prefs=1&2596706699&q0tPzMlJLaoEAA==
Connection: keep-alive

525 bytes

http://www.etsy.com
http://www.etsy.com

GET /assets/dist/js/etsy.recent-searches.20121001205006.js HTTP/1.1
Host: www.etsy.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/536.26.14
(KHTML, like Gecko) Version/6.0.1 Safari/536.26.14
Accept: */*
DNT: 1
Referer: http://www.etsy.com/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie: autosuggest_split=1;
etala=111461200.1476767743.1349274889.1349274889.1349274889.1.0;
etalb=111461200.1.10.1349274889; last_browse_page=%2F; uaid=uaid%3DVdhk5W6sexG-
_Y7ZBeQFa3cq7yMQ%26_now%3D1325204464%26_slt%3Ds_LCLVpU%26_kid%3D1%26_ver%3D1%26_mac
%3DlVnlM3hMdb3Cs3hqMVuk_dQEixsqQzUlNYCs9H_Kj8c.;
user_prefs=1&2596706699&q0tPzMlJLaoEAA==
Connection: keep-alive

226 new bytes; 690 total

http://www.etsy.com
http://www.etsy.com
http://www.etsy.com
http://www.etsy.com

GET /assets/dist/js/jquery.appear.20121001205006.js HTTP/1.1
Host: www.etsy.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/536.26.14
(KHTML, like Gecko) Version/6.0.1 Safari/536.26.14
Accept: */*
DNT: 1
Referer: http://www.etsy.com/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie: autosuggest_split=1;
etala=111461200.1476767743.1349274889.1349274889.1349274889.1.0;
etalb=111461200.1.10.1349274889; last_browse_page=%2F; uaid=uaid%3DVdhk5W6sexG-
_Y7ZBeQFa3cq7yMQ%26_now%3D1325204464%26_slt%3Ds_LCLVpU%26_kid%3D1%26_ver%3D1%26_mac
%3DlVnlM3hMdb3Cs3hqMVuk_dQEixsqQzUlNYCs9H_Kj8c.;
user_prefs=1&2596706699&q0tPzMlJLaoEAA==
Connection: keep-alive

14 new bytes; 683 total

http://www.etsy.com
http://www.etsy.com

GET /assets/dist/js/bootstrap/username-suggester.20121001205006.js HTTP/1.1
Host: www.etsy.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/536.26.14
(KHTML, like Gecko) Version/6.0.1 Safari/536.26.14
Accept: */*
DNT: 1
Referer: http://www.etsy.com/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Cookie: autosuggest_split=1;
etala=111461200.1476767743.1349274889.1349274889.1349274889.1.0;
etalb=111461200.1.10.1349274889; last_browse_page=%2F; uaid=uaid%3DVdhk5W6sexG-
_Y7ZBeQFa3cq7yMQ%26_now%3D1325204464%26_slt%3Ds_LCLVpU%26_kid%3D1%26_ver%3D1%26_mac
%3DlVnlM3hMdb3Cs3hqMVuk_dQEixsqQzUlNYCs9H_Kj8c.;
user_prefs=1&2596706699&q0tPzMlJLaoEAA==
Connection: keep-alive

28 new bytes; 698 total

http://www.etsy.com
http://www.etsy.com

• Four requests

• 2,596 bytes total

• Minimum three packets in most places

• One for the HTML, two+ for assets

• 1,797 redundant bytes

HTTP headers on a
connection are
highly similar

Request URI

User-Agent

Cookies

Referer

• Patrick’s test:

• 83 asset requests

• IW = 3

• ~1400 bytes of headers

• Uncompressed: 7-8RT

• Compressed (zlib): 1RT

Big req * many reqs / small IW = SLOW

2.3 server push (?)

2.4 TLS?

3. What does it all mean?

HTTP/2.0 is going to
change Web Engineering...

... but not change
HTTP APIs. Much.

Leaky Abstractions

Reduce Requests

• Image spriting - not necessary

• CSS / JS can be in multiple files

• HTTP APIs can be finer-grained without
sacrificing performance

• Third party content is an even bigger
problem

Domain Sharding

• Multiplexing SHOULD make multiple
connections unnecessary

• Key is to get the TCP connection
“warm” as quickly as possible, and
keep it there

Header Optimisation

• Now, adding new headers is easy

• Very small performance / latency /
bandwidth impact

• What should be in headers can be in
headers

• Content Negotiation might become
interesting again

Predictability

Better Error
Handling

Debugging will
need Tools

Lots of tweaking
• Prioritisation

• When to Push

• Flow Control

Transition Decisions

• De-sharding

• De-combining scripts

• De-spriting

• etc.

Guess
what,

Steve?

Absurdly Fast
Web Sites. Fast.

4. What’s still wrong

4.1 Security is hard

4.2 TCP is awkward
• In-order delivery = head-of-line blocking

• Initial congestion window is small

• Packet loss isn’t handled well

HTTP as the
“Everything Protocol”

?

Some Links

http://bit.ly/httpbis-home

http://www.chromium.org/spdy

http://www.mnot.net/

