
HTTP/2: 
Operable and Performant

Mark Nottingham @mnot (@akamai)

This talk may be disappointing.

Donald Rumsfeld

“As we know, there are known knowns;
there are things we know we know. We
also know there are known unknowns;
that is to say we know there are some

things we do not know. But there are also
unknown unknowns — the ones we don’t

know we don’t know.”

 H
TT

P
Pe

rf
Kn

ow
le

dg
e

1990 1995 2000 2005 2010 2015

Maybe we
should reuse that

connection…

First Velocity

HTTP/0.9 HTTP/1.1
HTTP/2

HTTP/2 is almost here!
… and it’s a lot like SPDY

HTTP/2 in One Slide
• Multiplexing + Header Compression + Server Push

• Goal: one connection from browser

• Post-WGLC

• Coming in Firefox, Chrome, IE, others very, very soon

{HTTP2, SPDY} and Performance

• Prioritisation!

• Server Push!

• Header Compression!

• TLS and TCP

1. Prioritisation

HTTP/1

HTTP/2

• In HTTP/1, Prioritisation is a browser heuristic*

• “CSS and JS first, then images…”

• “This connection for that request…”

• In HTTP/2, it’s hinted by the client, determined by the server.

* a.k.a. “guessing”

HTTP/2 Priority Hinting

12

4

5

5

• Servers can do what they like with this information.

• Only one of several potential sources!

• Page analysis, RUM over time, etc.

• No prioritisation performs worse than HTTP/1.

Ask Your Implementation
• How do you handle priority by default?

• What APIs do you expose for effecting prioritisation?

• How do you handle reprioritisation?

• Do you queue in user space and use
TCP_NOTSENT_LOWAT*?

* https://insouciant.org/tech/prioritization-only-works-when-theres-pending-data-to-prioritize/

https://insouciant.org/tech/prioritization-only-works-when-theres-pending-data-to-prioritize/

2. Server Push

Benefits of Push
• Avoid a RT without sacrificing Resource Granularity!

• Better cache efficiency

• Reduced parse / blocking

• Load what you need

• Modularity

• Client can refuse push with RST_STREAM

When do I Push?
• Easy answer: when you previously inlined / concatenated

• Creative answer: when you want to overload it for async data

• Real answer: we need research, metrics and tools!

• speculative push is likely a very different beast

• how will intermediaries handle server push?

3. Header Compression

GET / HTTP/1.1!
Host: www.etsy.com!
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/536.26.14 (KHTML, like Gecko)
Version/6.0.1 Safari/536.26.14!
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8!
DNT: 1!
Accept-Language: en-us!
Accept-Encoding: gzip, deflate!
Cookie: uaid=uaid%3DVdhk5W6sexG-_Y7ZBeQFa3cq7yMQ%26_now%3D1325204464%26_slt%3Ds_LCLVpU%26_kid%3D1%26_ver
%3D1%26_mac%3DlVnlM3hMdb3Cs3hqMVuk_dQEixsqQzUlNYCs9H_Kj8c.; user_prefs=1&2596706699&q0tPzMlJLaoEAA==!
Connection: keep-alive

GET /assets/dist/js/etsy.recent-searches.20121001205006.js HTTP/1.1!
Host: www.etsy.com!
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2) AppleWebKit/536.26.14 (KHTML, like Gecko)
Version/6.0.1 Safari/536.26.14!
Accept: */*!
DNT: 1!
Referer: http://www.etsy.com/!
Accept-Language: en-us!
Accept-Encoding: gzip, deflate!
Cookie: autosuggest_split=1; etala=111461200.1476767743.1349274889.1349274889.1349274889.1.0;
etalb=111461200.1.10.1349274889; last_browse_page=%2F; uaid=uaid%3DVdhk5W6sexG-_Y7ZBeQFa3cq7yMQ%26_now
%3D1325204464%26_slt%3Ds_LCLVpU%26_kid%3D1%26_ver%3D1%26_mac
%3DlVnlM3hMdb3Cs3hqMVuk_dQEixsqQzUlNYCs9H_Kj8c.; user_prefs=1&2596706699&q0tPzMlJLaoEAA==!
Connection: keep-alive

• Simple replacement strategies work surprisingly well

• e.g., LRU

• Tuning is more important when you mux clients

• e.g., in a load balancer / reverse proxy

• look at state commitment as well

• In the long run, changing how we use HTTP headers will improve
compression

4. TLS and TCP

• initcwnd of 10

• Turn off tcp_slow_start_after_idle

• Experiment with congestion control algorithms

How does {SPDY, HTTP/2} affect Ops?

• TLS!

• Load Balancing/Failover!

• DoS!

• Tools!

• Metrics!

• Transition Strategies

1. TLS

• HTTP/2 does not require https://

• However, Chrome and Firefox have said they won’t do plaintext http://

• … Firefox is experimenting with “Opportunistic Security” for http://

• If you want to get the most users onto HTTP/2, it has to be https://
(for now)

• Minimum TLS 1.2

• SNI required

• Renegotiation during HTTP prohibited

• Ephemeral Key Exchange required (for forward secrecy)

• AEAD ciphers effectively required

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 w/ P256

2. Failover and Load Balancing

• HTTP/2 flows are longer-lived!

• So, you can’t assume they’ll go away soon

• This changes load balancing and failover strategies

• GOAWAY allows you to gracefully shut down a connection

• Existing requests drain

• Alternative Services acts like CNAME at the HTTP layer

• “Spool up a connection at host:port and talk to it like it’s this origin.”

• It’s graceful; should introduce no latency / pauses

• Load balancing, geo optimisation, taking server out of rotation

• Browser support coming (hopefully)

3. DoS

TCP Connections
• HTTP/2 uses less connections by a factor of 4x - 8x!

• Those connections are a lot more active, well-utilised

• If you think you’re under attack, you’ve got options

• Reduce SETTINGS_MAX_CONCURRENT_STREAMS

• Flow control them

• GOAWAY

Memory
• Header compression = More state per connection

• default header compression state = 4k!

• state commitment can be tuned using SETTINGS_HEADER_TABLE_SIZE

• Buffering e.g., by intermediaries

• can be controlled by flow control

• (stream-level and connection-level)

CPU

• Binary format is easier to parse!

• HPACK is very low overhead (less than gzip)

• can be dialled down if need be with SETTINGS_HEADER_TABLE_SIZE

Intermediaries

• There are some cases where an intermediary can get in trouble

• Never forward a frame before you have it all!

• Never forward a header-bearing block before you have it all!

• … unless you really trust the sender.

4. Tools

curl

?

5. Metrics

• Connection Utilisation!

• idle periods, concurrency, reset streams, protocol errors

• HPACK efficiency!

• hit rates, memory consumption, lost opportunities

• both directions!

• RUM RUM RUM!

6. Transition
Strategies

“How Speedy is SPDY?” — Wang, Balasubramanian, Krishnamurthy and Wetherall

Un-Hacking Your Site
Spriting ☞ Separate Resources

Inlining ☞ Server Push

Sharding ☞ Single Host

Concatenation ☞ Separate Resources

Why Un-Hack?

• CSS Spriting delays image downloads (indirection)

• Concatenation / inlining / spriting reduce cache efficiency!

• Concatenation / inlining / spriting encourages wasted download!

• JS concatenation increases parse/load overhead!

• Sharding reduces header compression efficiency, tcp flow gains

When to Un-Hack?

• Lots of choices:

• When x% of your traffic supports HTTP/2

• Dynamically hack per connection

• Gradual rollout

• Just Do It

• Switch to HTTPS first

• De-[sprite, concatenate, shard, inline]

• Browser rollout period is a unique opportunity

• Collect metrics!

Questions?

