
Structured 
Headers
Mark Nottingham, Fastly @mnot

1

HTTP headers 
are horrible.

2

Cache-Control: max-age=3600, must-revalidate

3

Accept: text/html;q=0.9, image/*

4

Cache-Control: max-age=3600 
Cache-Control: must-revalidate

5

Cache-Control: max-age=3600, must-revalidate

Set-Cookie: foo=bar; Expires=Wed, 09 Jun 2021 10:18:14 GMT 
Set-Cookie: baz=bat

6

Cache-Control: max-age =3600

Chrome Firefox Safari Edge nginx Squid ATS httpd Varnish Fastly

● ○ ○ ○ ● ● ○ ● ○ ○

 Cache-Control = 1#cache-directive

 cache-directive = token ["=" (token / quoted-string)]

Invalid, right? ^

7

https://github.com/http-tests/cache-tests/wiki/Traffic-Server

implied *LWS

 The grammar described by this specification is word-based.
Except where noted otherwise, linear white space (LWS)
can be included between any two adjacent words (token or
quoted-string), and between adjacent words and separators,
without changing the interpretation of a field.

RFC2616

8

Cache-Control: max-age=3600a

Chrome Firefox Safari Edge nginx Squid ATS httpd Varnish Fastly

● ● ○ ● ○ ● ● ○ ● ●

 Cache-Control = 1#cache-directive

 cache-directive = token ["=" (token / quoted-string)]

Will the cache use it? ^

9

https://github.com/http-tests/cache-tests/wiki/Traffic-Server

10

Why Headers are Horrible
• Headers specification is difficult:

• ABNF has extremely sharp edges

• Writing and implementing parsing algorithms is painful

• Error handling is often forgotten

• Headers are ill-defined and don’t leverage common syntax

• Header parsing and serialisation is usually one-off

• Security and performance suffer

• Interoperability sucks
11

12

Item Types
• Integer 15

• Decimal 3.5

• String "foo bar" 

• Token foo

• Boolean ?1

• Byte Sequence  
:cHJldGVuZCB0aGlzIGl
zIGJpbmFyeSBjb250ZW5
0Lg==:

All Items can be parameterised 15; a=b;c=5

13

Container Types
• List 3.5, 4, foo, "hello world"

• Inner lists (3.5, 4.5), other-thing

• Dictionary foo= 3.5, bar=?0

• Inner lists thing=(1,2), other=(3,4)

14

15

Example-IntegerHeader: 42

Example-StringHeader: "hello world"

Example-BinaryHdr: :cHJldGVuZCB0aGlzIGmFyeSBjb250ZW50Lg==:

Example-DictHeader: max-age=60, must-revalidate

Example-ListHeader: foo, bar;q=0.1

16

• Syntax is defined in terms of rich, well-understood types

• Error handling is taken care of

• Common, generic libraries for parsing and serialisation

• Test corpus to ensure interoperability

• Implementations can concentrate efforts on security and perf

17

• Python 3 
pip install shhh

• Ruby 
https://github.com/phluid61/http-structured-headers

• JavaScript 
npm install structured-header

• C++ in Chrome  
https://bugs.chromium.org/p/chromium/issues/detail?id=1011101

• Erlang 
https://github.com/ninenines/cowlib/blob/master/src/cow_http_struct_hd.erl

• Test corpus 
https://github.com/httpwg/structured-header-tests

18

• Variants

• Gateway-Error

• Signature

• Accept-Signature

• Sec-Metadata

• ...

19

Opportunities

20

1) Backporting

21

22

2) Binary Serialisation

23

• HTTP/2 extension negotiated with a SETTING

• “I will properly handle Structure Headers you send me...”

• “Native” structured headers as-is

• “Backported” structured headers (with appropriate
processing, e.g., Date and Cookie)

• Any input that results in a parse failure gets sent as an
unstructured header

• Hop-by-hop negotiation, but structured headers can be
forwarded if the next hop understands them

24

• Can fall back to non-structured headers for errors

• More (much more) efficient serialisation and parsing

• Sometimes, more efficient on the wire - e.g., integer, binary

• Can choose where/when to parse, header-by-header

• Once it's parsed, it's parsed.

25

3) Structured Compression

26

27

28

29

Cache-Control: max-age=3600, s-maxage=7200, must-revalidate

Cache-Control: max-age=3600, s-maxage=7200, must-revalidate

HPACK

HPACK+Structure

30

31

Structured Headers gives us...

• Easier and more complete header specification

• Common implementations of parsers and serialisers

• Better focus for security and performance engineering

• Opportunities for future efficiencies

32

Challenges

• Syntax is purposefully limited, so some headers may shy away

• ... but initial adoption is promising

• Getting full benefits requires end-to-end support

• e.g., browser JS APIs, server-side integration

• ... but partial benefits are still attractive

• Compression benefits still unproven

33

• https://httpwg.org/http-extensions/

• https://httpwg.org/http-core/

• https://github.com/httpwg/structured-header-tests/

• https://mnot.github.io/I-D/binary-structured-headers/

• https://cache-tests.fyi/

34

