Structured
Headers

ark Nottingham, Fastly @mno

HTTP headers
are horrible.

Cache-Control: max—-age=3600, must-revalidate

Accept: text/html;g=0.9, image/*

Cache-Control: max—age=3600
Cache-Control: must-revalidate

Cache-Control: max—age=3600, must-revalidate

Set-Cookie: foo=bar; Expires=Wed, 09 Jun 2021 10:18:14 GMT
Set-Cookie: baz=bat

Cache-Control = l1l#cache-directive
cache-directive = token ["=" (token / quoted-string) |

Cache-Control: max-age =3600
Invalid, right? A

Chrome Firefox Safari Edge nginx Squid ATS httpd Varnish Fastly

o O @) O o o O o O @)

https://github.com/http-tests/cache-tests/wiki/Traffic-Server

IMPLIED *LWS

The grammar described by this specification is word-based.
Except where noted otherwise, linear white space (LWS)
can be included between any two adjacent words (token or
quoted-string), and between adjacent words and separators,
without changing the interpretation of a field.

RFC2616

Cache-Control = l1l#cache-directive
cache-directive = token ["=" (token / quoted-string) |

Cache-Control: max-age=3600a

Will the cache use it? A

Chrome Firefox Safari Edge nginx Squid ATS httpd Varnish Fastly
o ® O ® O ® ® O o ®

https://github.com/http-tests/cache-tests/wiki/Traffic-Server

4.1. Policy Syntax

A Content Security Policy consists of a U+003B SEMICOLON (;) delimited list of directives. Each directive
consists of a directive name and (optionally) a directive value, defined by the following ABNF:

policy-token = [directive-token *x(";" [directive-token]) 1
directive-token = *WSP [directive-name [WSP directive-value]]
directive-name = 1x(ALPHA / DIGIT / "-")

directive-value = *(WSP / <VCHAR except ";" and ",">)

4.1.1. Parsing Policies

To parse the policy policy, the user agent MUST use an algorithm equivalent to the following:

1. Let the set of directives be the empty set.

2. For each non-empty token returned by strictly splitting the string policy on the character U+003B
SEMICOLON (;):

1. Skip whitespace.

2. Collect a sequence of characters that are not space characters. The collected characters are the
directive name.

3. If there are characters remaining in token, skip ahead exactly one character (which must be a space
character).

4. The remaining characters in token (if any) are the directive value.

B. If the set of directives alreadv contains a directive whose name is a case insensitive match for directive

Why Headers are Horrible

e Headers specification is difficult:
e ABNF has extremely sharp edges
e Writing and implementing parsing algorithms is painful
e Error handling is often forgotten
e Headers are ill-defined and don’t leverage common syntax
e Header parsing and serialisation is usually one-off
e Security and performance suffer

e Interoperability sucks

11

HTTP Working Group M. Nottingham

Internet-Draft Fastly
Intended status: Standards Track P-H. Kamp
Expires: August 13, 2020 The Varnish Cache Project

February 10, 2020

Structured Headers for HTTP

draft-ietf-httpbis-header-structure-latest

Abstract

This document describes a set of data types and associated algorithms that are
iIntended to make it easier and safer to define and handle HTTP header fields. It is
iIntended for use by specifications of new HTTP header fields that wish to use a
common syntax that is more restrictive than traditional HTTP field values.

Item 1ypes

e Integer 15 .
e Decimal 3.5 .
o String "foo bar" e

All Items can be parameterised

13

Token foo
Boolean 21

Byte Sequence

: cHI ldGVuZCB0aGlzIGLl
zIGIpbmFyeSBjb250ZW5
OLg==:

15;: a=b;c=5

Container Types

e List 3.5, 4, foo, "hello world"
e Innerlists (3.5, 4.5), other-thing
e Dictionary foo=3.5, bar=70

e Inner lists thing=(1,2), other=(3,4)

14

4.2.2. Parsing a Dictionary

Given an ASCII string as input_string, return an ordered map whose values are
(item_or_inner_list, parameters) tuples. input_string is modified to remove the parsed

value.

1. Let dictionary be an empty, ordered map.

2. While input_string is not empty:

1.

Let this_key be the result of running Parsing a Key (Section 4.2.3.3) with
input_string.
If the first character of input_string is “=":

1. Consume the first character of input_string.

2. Let member be the result of running Parsing an Iltem or Inner List (Section
4.2.1.1) with input_string.

. Otherwise:

1. Let value be Boolean true.
2. Let parameters be an empty, ordered map.

3. Let member be the tuple (value, parameters).

. Add name this_key with value member to dictionary. If dictionary already

contains a name this_key (comparing character-for-character), overwrite its
value.

Discard any leading SP characters from input_string.

6. If input_string is empty, return dictionary.

. Consume the first character of input_string; if it is not “,”, fail parsing.

Example-IntegerHeader: 42

Example-StringHeader: "hello world"

Example-BinaryHdr: :cHJldGVuZCBOaGlzIGmFyeSBjb250ZW50Lg==":

Example-DictHeader: max-age=60, must-revalidate

Example-ListHeader: foo, bar;g=0.1

16

e Syntax is defined in terms of rich, well-understood types
e Error handling is taken care of

e Common, generic libraries for parsing and serialisation
e Test corpus to ensure interoperability

e Implementations can concentrate efforts on security and perf

17

e Python 3
pip install shhh

e Ruby
https://github.com/phluid61/http-structured-headers

e JavaScript
npm install structured-header

e C++ in Chrome
https://bugs.chromium.org/p/chromium/issues/detail 7id=1011101

e Erlang
https://github.com/ninenines/cowlib/blob/master/src/cow http struct hd.erl

e Test corpus
https://github.com/httpwg/structured-header-tests

18

e Variants

o Gateway-Error

e Signature

e Accept-Signature

e Sec-Metadata

19

Opportunities

1) Backporting

HEADERMAP = {
"accept": "list",
"accept-encoding": "1list",
"accept-language": "list",
"accept-patch": "1list",
"accept-ranges": "list",
"access—-control-allow-credentials": "item",
"access—-control-allow-headers": "1list",
""access—-control-allow-methods": "1list",
"access-control-allow-origin": "item",
"access—-control-max—-age": "item",
"access—-control-request-headers": "1list",
""access—control-request-method": "item",
"age": "item",
"allow": "list",
salpnti Clist

"alt-svc": "dictionary",
"alt-used": "item",
""cache-control": "dictionary",

""connection": "1list",
"content-encoding": "item",
"content-language": "list",
"content-length": "item",
"content-type": "item",

“"expect": "item",

"expect-ct": "dictionary",
"forwarded": "dictionary",

"host": "item",

"keep—alive": "dictionary",
"origin": "item",

"pragma': "dictionary",

"prefer": "dictionary",
"preference-applied": "dictionary",
"retry-after": "item",
"strict-transport-security": "dictionary",
"surrogate-control": "dictionary",
e S Listh,

"trailer": "list",
"transfer-encoding": "list",
"vary": "list",
"x-content-type-options": "item",
"x-xss-protection": "list"

import http.cookies
def parse_cookie(value):
cookies = http.cookies.SimpleCookie()
cookies. load(value)
cookies = {c:cookies[c].value for c¢ in cookies}
return cookies

import calendar
from email.utils import parsedate as lib_parsedate
def parse_date(value):
date_tuple = lib_parsedate(value)
if date_tuple is None:
raise ValueError
if date_tuple[0] < 100:
if date_tuple[0@] > 68:
date_tuple = (date_tuple[0]+1900,) + date_tuple[l:]
else:
date_tuple = (date_tuple[0]+2000,) + date_tuple[l:]
return calendar.timegm(date_tuple)

backport_funcs = {
b'cookie': parse_cookie,
b'date': parse_date,
b'last-modified': parse_date,
b'expires': parse_date

}

2) Binary Serialisation

e HTTP/2 extension negotiated with a SETTING
e “Iwill properly handle Structure Headers you send me...”
e “Native” structured headers as-is

e “Backported” structured headers (with appropriate
processing, e.g., Date and Cookie)

e Any input that results in a parse failure gets sent as an
unstructured header

e Hop-by-hop negotiation, but structured headers can be
forwarded if the next hop understands them

24

e Can fall back to non-structured headers for errors

e More (much more) efficient serialisation and parsing

e Sometimes, more efficient on the wire - e.g., integer, binary
e Can choose where/when to parse, header-by-header

e Once it's parsed, it's parsed.

25

3) Structured Compression

Internet Engineering Task Force (IETF) R. Peon

Request for Comments: 7541 Google, Inc
Category: Standards Track H. Ruellan
ISSN: 2070-1721 Canon CRF

May 2015

HPACK: Header Compression for HTTP/2

Abstract

This specification defines HPACK, a compression format for efficiently representing
HTTP header fields, to be used in HTTP/2.

= PROPOSED STANDARD
Status Of Thls M emo This document has errata.
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for publication by the Internet Engineering Steering
Group (IESQG). Further information on Internet Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained
at http://www.rfc-editor.org/info/rfc7541.

spdy3

T
350

T
300

T
250

T
200

T
150

o
=
N -
woo19)ewuonsenb
KR Bl
Emmm%cao_n?_
J] I SASRRABE MR L0gozp
Jauo1198|qnop
Eoo.:ONmEm-mwmmE_f
ﬂV’
H"HV
”
o —
Wwo9°uozewe
o o o o o o
o o o o o o
© A N S © ©

s9)Aq ‘azis passaidwod

woo'8y ewuonsanb

i
ﬁm%%aao_ne

48 e RISAS R HBER Mo Logozp

18U"fI0BIgNOP

http1

hyges_hpack

Eoo.conEm-mmmmE.f
M
\“\l‘v -
)A w
woo uozewe
o o o o o o o
o o o o o o o
© < N S ® © <
~- ~- ~- ~-

s9)Aq ‘ozIs passaidwoo

T
350

T
300

T
250

T
200

T
150

HPACK

Cache-Control: max-age=3600, s-maxage=7200, must-revalidate

HPACK +Structure

Cache-Control: max-age=3600, s-maxage=7200, must-revalidate

30

RypIPafsack

a
=
woojaxewuonsanb —
it =
: o S5
Emm%mcmo_ne S~
=
B SIS RR: BEEME =
188344 2 L0£0ZP T
JoU"301|03]GNOp |
3
Aw
S
.AJ
L
“.
A._
P
&/
%
=Y
|
—
)
3
={>
———
—)
1
(
§
»
nll‘
‘W
,_
Eoo.conEm-mmmmEf — 1."
———— ——
- -
e —
|‘.I|“|V
— wﬁ g
Wo9 uozZewe ——
S 8 8 8 S S S 8
] < S S 3 3 S S

sa)Aq ‘azis passaldwod

!
350

!
300

T
250

T
200

T
150

Structured Headers gives us...

e Easier and more complete header specification
e Common implementations of parsers and serialisers
e Better focus for security and performance engineering

e Opportunities for future efficiencies

32

Challenges

e Syntax is purposefully limited, so some headers may shy away
e ... but initial adoption is promising

o Getting full benefits requires end-to-end support
e c.g., browser JS APIs, server-side integration
e ... but partial benefits are still attractive

e Compression benefits still unproven

33

e https://httpwg.org/http-extensions/

e https://httpwg.org/http-core/

e https://github.com/httpwg/structured-header-tests/

e https://mnot.github.io/I-D/binary-structured-headers/

e https://cache-tests.tyi/

34

