
Mark Nottingham December 2020

For the Users

Hi everyone. Today I want to talk about making technology work for its users, and what that
means to the technology community. But first I want tell a story about pre-Internet engineering.

Theodore Cooper was an engineer, but he didn't work with Rust, Intel processors or HTTP - he
worked with iron, steel and wood. His specialty was building bridges. In fact, he was one of the
most well-respected bridge builders at the turn of the century, and also was at one point
director of the American Society of Civil Engineers.

He was also a bit of a cowboy, and I think we can recognise some aspects of what we call
'engineering' in him. He graduated as a civil engineer at the age of 19, joined the Navy for a
spell during the American Civil War, and then worked for a string of engineering companies,
overseeing the construction of a succession of bridges.

At one point he went without sleep for sixty-five hours straight to deal with an emergency, and
another time he sent a wire to his boss at midnight because the arch of a bridge was rupturing,
and he needed advice on how to avoid it. He didn't have StackOverflow.

One of Mr. Cooper's biggest and best known projects was the First Quebec Bridge in Quebec
City, seen here under construction in 1907. It took a long time to design, because the Quebec
Bridge Company didn't have flexibility in its budget, and this was a big span. So large that it
would be, once completed, the world's longest spanning bridge.

Another problem was that Edward Hoare, the company's chief engineer, had never worked on a
cantilevered bridge longer than 300 feet, and this bridge was planned to span 1,600 feet. So
they were thrilled to get the famous Thoeodore Cooper on as a Consulting Engineer, and he
quickly took charge of the project.

One of the first things he did was recommend that the bridge be extended to 1,800 feet, so that
the piers wouldn't catch as much ice in the winter, speeding up construction as well. The extra
steel in the bridge cost more money, and the budget was tight, so Cooper modified the
specifications to use less. No one questioned the modified design; after all, they had a 10x
bridge engineer on their hands.

Then they started to build.

It's called the First Quebec Bridge because on 29 August 1907, it collapsed while still under
construction. 75 workers were killed, and 11 injured. A Royal Commission investigated the
disaster and found that Cooper and one of his peers were responsible for the failure, because of
their errors in judgement, and lack of supervision over the project. They hadn't bothered to do
the math on how much steel the bridge actually needed as its design evolved, instead relying on
Cooper's star power to assure success.

© Taylor Petrick

The First Quebec Bridge disaster led to a lot of soul searching and discussion about the power
that engineers have. Canada and the United States already had professional societies for civil
engineers, but ethics hadn't been a prominent part of the discussion until then.

This was in a time when technology was not only putting the workers building it at risk, but was
also changing society in fundamental ways. Railroads were originally a technical achievement,
but deployed at scale they amassed considerable power and wealth into a few hands, and by
the late 1800's necessitated a whole new form of law, Anti-Trust, to protect consumer welfare
and combat market domination.

Engineers had started to become thoughtful about their impact on the world, and one of the
outcomes was a ring made of iron, like this one, that new engineers received upon taking an
oath.

I am an Engineer.

In my profession I take deep pride. To it I owe
solemn obligations.

As an engineer, I, (full name), pledge to practice
Integrity and Fair Dealing, Tolerance, and Respect,
and to uphold devotion to the standards and dignity
of my profession, conscious always that my skill
carries with it the obligation to serve humanity by
making best use of the Earth's precious wealth.

As an engineer, I shall participate in none but
honest enterprises. When needed, my skill and
knowledge shall be given without reservation for
the public good.

In the performance of duty, and in fidelity to my
profession, I shall give the utmost.

- Obligation of an Engineer

There are a few versions of that oath; the Canadian one was written by Rudyard Kipling. This is
the US version, and bestows a duty upon engineers to be conscious of their obligation to serve
humanity.

To paraphrase, engineers create technology, and technology gives leverage to do new things.
That leverage is power, and with power comes responsibility.

Or, to put it another way, hubris is always a danger for engineers -- whether you're building a
bridge or building a social network. Our actions have affects on the real world.

This is a Timex Sinclair 1000 -- my first computer. It cost my parents US$99.95 and with 2K of
memory, a membrane keyboard, and a cassette tape for longer-term storage, it spent a lot of
time hooked up to our TV, where I quickly learned the ins and outs of BASIC.

For me as a 11 year old, it offered a window into a whole new world -- one that I could control
absolutely.

It's a well-worn trope -- nerds like computers because with them, we don't have to deal with the
real world. There is some truth to it, I suspect.

For some, working on tech is a retreat into purity -- a 'harmless and innocent' place precisely
because of its disconnection from the 'real world'.

“Tech should not be political.”

- lots of tech people

I think these are reasons why we see assertions like this a lot - that tech should not be political.

It's tempting to think that tech is pure; that we can seperate it from the world that it's used in.

“MOAR TECH will fix $problem.”

- fewer tech people these days

The opposite side of that coin is the notion that tech can and will improve anything -- technical
utopianism. Fewer people ascribe to this belief publicly nowadays, because I think most realise
how absurd it sounds. But old habits die hard, and I think more than a few tech people have a
bias towards more tech as a solution to any given problem.

Technology itself is not political.

The processes of creating technology are often political.

The impact of technology on society is political...

... but hard to predict.

Milton Meuller and Colin J Kiernan, STANDARDIZING SECURITY: Surveillance, Human Rights, and TLS 1.3 (2020)

The truth is that tech itself isn't very political. However, the processes we use to create it often
are, and the impact it has on society is almost always political in some fashion. It's also hard to
predict.

In•fra•struc•ture

Or, to put it another way, tech people often think of themselves as building infrastructure.
Infrastructure itself isn't political; it's just infrastructure. However, the process of creating it as
well as its effects on society are often intensely political.

© Lauri Kolehmainen

Take roads. Roads aren't political; they're just roads. But it often takes a significant community
consultation process spanning years to plan and build a road, because its effects on people can
be profound. Building roads changes the way a society organises itself, and you'll notice that if
you compare places with different approaches to road-building.

A road can also have more direct and negative effects on a community. The road you see
pictured here is I-170 in Baltimore, near where I grew up. It splits a black community in two, as
many other roads did when the Interstate Highway System was built in the United States.
Infrastructure isn't inherently political, but its effects certainly can be.

Which brings us to Internet technology and infrastructure. Open standards, open source and
what your company might be doing.

There are plenty of examples of how they can have deep and uneven impacts on society, but
let's go through just a few.

Here's a report of a software company who made a secret deal with a drug company to
automatically suggest their opioids as treatment. Engineers designed the feature, wrote that
code, and tested it (probably).

Here's a more subtle case. An engineer was given a task to design an algorithm to crop images,
and someone found that it appears to favour white faces over Black ones. They used Machine
Learning, and it's still not clear how biased the algorithm actually is, and more importantly, why.

It's hard to support the notion that the engineering choices here don't have significant effects on
society. Should the engineer have anticipated this? What processes and habits would make that
consideration more likely?

Similar aspects of Internet Standards are also increasingly hard to ignore. DNS over HTTPS
encrypts DNS requests so that the network can't see them. That's great if you're a user in a
coffee shop, or maybe if you're a citizen of a repressive regime, but it's freaking out a lot of
enterprise network operators, because they use DNS to detect malware (and maybe control
what their users do). Do networks have the right to decide what people do with them, and to see
what they're doing? Is that part of the design of the Internet?

“Move fast and break things.”

Overall, there's a tendency in our industry to respond to this by burying our heads in the sand
and pretend that tech is special; that we can still, in the words of Mark Zuckerberg, "move fast
and break things."

But the rest of the world has noticed, and they're not very happy with tech. This shouldn't
surprise us; the Internet is no longer a place dominated by technical people; it's where more
than half of the world's population goes for information, services, entertainment, work and civic
participation.

And people are trying to figure out how to rein in the worst effects of the rapid changes that
technology has brought. For example, competition authorities have shown intense interest in big
Internet platforms over the last few years.

If you haven't already, skim read one or two of these reports, and ask yourself whether their
conclusions about market power and abuse are reasonable. To many, the big question here isn't
whether big platforms have market power, or that in many cases they're abusing it; the question
is what the right remedies are.

Remember that 'move fast and break things' is not normal in many places. Consider for a
moment how much society needs -- not just wants -- a coronavirus vaccine right now. Even
though many, many candidates exist right now, they aren't allowed on the market; they still have
to go through rigorous testing to prove that they're safe, and they work.

It takes months and years; you don't ship a vaccine in a six-week sprint.

Some people are asking why the same rigour isn't applied to digital platforms, especially when
they can be used to sway elections.

Regulation is Coming.

And, while much of the attention is on big platforms for now, it's becoming clear that
governments, civil society and the public at large are no longer happy to leave the tech world
alone in defining the details of how an increasing amount of everyone's time, attention and
money is spent. Some people want to control what's available online and how it's exposed.

Regulation of technology is coming. The question is what form it will take, and how the tech
community will interact with it.

In the past, there have been a number of adversarial encounters between governments and
various tech communities, especially regarding topics like encryption. This all-or-nothing
approach pits regulation by law against regulation by architecture -- that is, the code that we
write.

Often, when a regulator says that they've consulted with the tech community, it means that
they've held meetings with policy specialists from the big platform companies; the broader open
source and internet technical communities are left out.

These aren't healthy interactions, and they don't bode well for the future of tech.

Norms

Markets

Architecture

Law

But it doesn't have to be that way. Lawrence Lessig observes that there are four modalities of
regulation -- by norms, markets, architecture and law.

Each of these is a form of constraint that could work on its own, but they're most effective --
and less harmful -- when they work together.

For example, smoking kills people, but social constraints on smoking, the price of cigarettes,
the limits of how a smoker can use cigarettes due to things like smoke and fire risk, and laws
against things like smoking in restaurants and selling cigarettes to minors all work together to
reduce the harm of smoking while still balancing the rights of smokers. They are much more
effective than a simple ban on cigarettes, which would likely be circumvented.

Norms

Markets

Architecture

Law

Net Etiquette, Communities

Advertising, Network Peering

Standards, Code

GDPR, ePrivacy, CDA, DCMA

And applied to the Internet, we can see net etiquette (or the lack thereof) as a norm, advertising
as a funding model as one of the big market constraints (for better or worse), and both
standards and code -- especially open source -- as the architecture.

The law has already shown some interest in technology, with things like the GDPR and ePrivacy
directive in Europe, and the CDA and DMCA in the United States. And, despite how scary some
of the potential interventions being talked about sound, lawmakers in most jurisdictions are
acutely aware that anything they do is likely to have negative effects, and so they're very
receptive to relying on the other modalities where possible.

A Choice.

So I think that technical people and people who care about the continued health of Internet-
related technology have a choice.

We can continue to move fast and break things, and have legal regulation imposed upon
technology without much say.

Or, we can attempt some regulation by architecture and through norms in our community, to
align technology's capabilities with society's needs. It may not prevent more legal regulation,
but it might soften its negative effects.

For the Users.

One of the ways we can align technology with society's needs is to explicitly prioritise the needs
of end users over anyone else -- actively working to serve them better with technology, not just
getting more time, attention or money from them. This idea has turned out to be central to a lot
of efforts recently.

In case of conflict, consider users over authors over implementors over
specifiers over theoretical purity. In other words costs or difficulties to
the user should be given more weight than costs to authors; which in
turn should be given more weight than costs to implementors; which
should be given more weight than costs to authors of the spec itself,
which should be given more weight than those proposing changes for
theoretical reasons alone. Of course, it is preferred to make things better
for multiple constituencies at once.

HTML Design Principles, 3.2 Priority of Constituencies

In standards work, an early sign of focus on user needs was the HTML Design Principles'
priority of constituencies.

This small piece of text guides many decisions on the Web platform; if you want to change
HTML in a way that advantages implementers over users, for example, expect it to be refused.

“Rough consensus and 
running code.”

Unofficial IETF motto

In the IETF, on the other hand, the historic focus on "rough consensus and running code"
conspicuously left users out of the equation; it's who shows up and who writes code that
matters in this view (with an emphasis on the code).

“Our job, as technologists, our job as engineers, our job as
anybody who cares about the internet in any way, who has
any kind of personal or commercial involvement is literally
to armor the user, to protect the user and to make that they
can get from one end of the path to the other safely without
interference.”

Edward Snowden, comments at IETF 93

That has started to change recently, especially after Edward Snowden's revelations about
pervasive monitoring of network traffic, which angered a lot of IETF participants.

In 2014, Snowden did a remote Q&A with the IETF. One of the things he said to us was that our
job, as engineers, is to protect the user. In the IETF, that's a heavy burden, because people
depend on our protocols to make the Internet work, and recently we've has been called on to
make more decisions about things that could affect users negatively. Things like inserting third
parties into network flows.

"rough consensus and running code" doesn't inform those decisions.

We started discussing these topics on the Internet Architecture Board, which is a group of
people who are selected to think about long-term issues. The result, after a few years, was
RFC8890, "The Internet is for End Users."

This document discusses why the IETF should prioritise user needs, and explores how it might
achieve that. It's a call to the engineers in the IETF to protect users.

I've already talked about the why, so let's briefly cover the how, and then see if we can extend it
to other places like Open Source and tech companies.

What’s in the interest of end users?

Probably the most obvious and hardest question in this area is how to know what's best for end
users.

However, it's the wrong question. The IETF (or any other technical body) shouldn't put itself in
the place of deciding what's best for everyone; that's tech paternalism, and we don't have (and
shouldn't have) the authority to impose our will on the rest of the world.

On the other hand, we shouldn't just blindly rubber-stamp every specification that comes our
way; that would quickly lead to the parties with the lowest expectations setting the standard of
what happens on the Internet.

Identify Harms

The For the Users RFC argues that instead of trying to determine what's best for users, we
should have more concrete and achievable goals: in particular, we need to get better at
identifying harm to end users, especially unintentional harm.

That means thinking about the consequences of our design choices more carefully, and
understanding how technology is used - and misused - in lots of different situations.

“But the plans were on display…”

“On display? I eventually had to go down to the
cellar to find them.”

“That’s the display department.”

“With a flashlight.”

“Ah, well, the lights had probably gone.”

“So had the stairs.”

“But look, you found the notice, didn’t you?”

“Yes,” said Arthur, “yes I did. It was on display
in the bottom of a locked filing cabinet stuck in
a disused lavatory with a sign on the door
saying ‘Beware of the Leopard.”

- Douglas Adams, The Hitchhiker’s Guide to the Galaxy

To get that understanding, we need to have more diverse interactions with the communities that
use our protocols.

However, participating in the IETF is really difficult for non-technical people. In fact, it's not just
difficult, it's unreasonable to expect it.

That's why the For the Users RFC encourages us to leave the comfort of our mailing lists and
meetings to gather input and feedback; we shouldn't expect people to come to us. Instead, we
need to find where the affected communities are and participate there.

Even with more insights about how our decisions affect end users, there are going to be
situations where we'll need to balance many identified harms against each other, or where there
are conflicting priorities amongst different groups of users.

There's no magic recipe to make the right decision in these cases, but we can get some help.
By applying a set of agreed-to principles, we're more likely to be aligned with the architecture of
the Internet and get outcomes that are consistent. That makes the development of those
principles critical. Luckily, the IETF already has a number of user-centric principles documented.

For example, we have strong guidance on things like privacy, and fighting surveillance. The
focus is on providing an Internet with the properties that people have come to expect. As
attacks get more sophisticated, we roll out more sophisticated protections, which is why you

see protocols like DNS over HTTPS being deployed.

However, we're not done; we need to continuously developing user-centric principles.

Create User-Agents

Another area of focus for the RFC is in creating user-centric systems.  

For example, the Web is designed so that browsers actively try to represent user needs, thanks
to their built-in role as mediators between content and users.

Comparatively, the Internet of Things is a trash fire, where users don't have anyone on their side,
and services get to decide how much to respect user privacy and autonomy on a case-by-case
basis.

It's not that the Web is perfect, by any means, and browsers make a lot of tradeoffs in their
decisions. The point is that systems with incentives for user-positive behaviour are a huge win,
and they should be encouraged.

Deprioritise Internal Needs

Finally, the RFC, implores technologists to put their own needs below those of their users, much
like HTML's priority of constituencies does. Yes, writing code and tests is a pain, but that's
never an excuse for treating your users badly, or creating a system that's tilted against them.

For the Users:

What you can do

So, how does all of this apply to what you do in tech? I think there are three areas that it could --
what we do personally, what open source projects do, and what tech companies do.

In particular, there's been a lot of focus recently on how tech companies and open source
efforts treat employees and contributors, with efforts around diversity and inclusion.

These are great developments, but we also need to consider tech's broader effects -- on the
people we call users, but who are really our siblings, our children, our friends, our parents, our
teachers, and fellow citizens.

Tech has formed a reputation in that world of being used by a few people to gain power over,
and money from, many. While contributing to Open Source and improving our own communities
is good, it isn't nearly enough.

The JSON License

Copyright (c) 2002 JSON.org

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

The Software shall be used for Good, not Evil.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

People have tried to manage the impact of their technical work before, but often struggle to find
effective ways to do it. For example, writing "don't be evil" into your license file might make you
feel better, but it doesn't really help anything.

To me, it starts by regularly asking ourselves if we're "the baddies." I've worked in tech for
twenty five years, and one of the most common things I've seen is a belief that one's company,
an open source project, or a standard is "the good guys" -- without understanding how other
people are affected by its actions. That's no longer acceptable in an industry with our amount of
impact on society.

Maybe it means organising a walkout when your employer doesn't live up to your standards.

But more likely, it means considering that your users shouldn't have to completely trust you to
use your service. While you might not intend any harm, that doesn't mean that there isn't any.

It means thinking about how what you do might be misused, whose hands it puts power into,
and how it affects people. And, in the big picture, what kinds of ecosystems your work is
contributing to.

That's something you can bring up at a meeting, or in a design document, or by filing an issue.

Look at the terms of service and other legal agreements for your company or project's site
through the eyes of your users and what they want to be assured about.

Tools like the GDPR and data governance efforts are there to protect users -- not annoy you.
Work with them, and honour the spirit, not just the letter.

In particular, think about all of the data you keep about users, and whether it's really necessary.
Data is immensely powerful, especially in combination. Users' data should remain their property,
not yours.

We also have a responsibility to get involved in the larger discussions about the place of tech in
society. That's likely to not only involve educating others about tech, but also educating

ourselves about others' perspectives.

And I'd be remiss not to mention the great work that organisations like the EFF and CDT are
doing on behalf of users. They need our support.

Does my [project, company, specification] respect user needs and avoid harms if it:

•Performs or enables third party behavioural tracking

•Doesn’t use or enable encryption to ensure privacy

•Doesn’t give users effective control over how their data is used

•Locks users (or their data) in

•Creates and keeps network effects to itself

•Doesn’t give users effective control over the data they consume

•Uses or enables dark patterns to nudge users towards things against their interest

•Has terms of service that are hedged against user interests (e.g., blanket consent)

•Uses or enables fingerprinting or similar techniques for user tracking

•Keeps more data about users (e.g., logs) than necessary (or longer than necessary)

•Uses machine learning to classify people

I know that a lot of this has been pretty abstract, so here are some concrete questions you can
ask yourself about your project, your company, or if you happen to work in standards, the
specifications you write. It is by no means a complete list, but hopefully you'll get an idea of
what I'm talking about here, and how to map it to what you do from day to day.

We can’t separate tech
from the real world.

I think I've said everything I wanted to about this topic, and maybe a bit more. I hope you've
found it interesting and thought provoking.

If I could leave you with just two thoughts, it would be this: we can't separate tech from the real
world...

Be a citizen, not just 
an engineer.

... and we should be fully engaged citizens in society, not just engineers.

Thank you.

